Investigation of clustered actuation in tensegrity structures
نویسندگان
چکیده
As tensegrity research is moving away from static structures toward active structures it is becoming critical that new actuation strategies and comprehensive active structures theories are developed to fully exploit the properties of tensegrity structures. In this paper a new general tensegrity paradigm is presented that incorporates a concept referred to as clustered actuation. Clustered actuation exploits the existence of cable elements in a tensegrity structure by allowing cables to be run over frictionless pulleys or through frictionless loops at the nodes. This actuation strategy is a scalable solution that can be utilized for active structures that incorporate many active elements and can reduce the number of actuators necessary for complex shape changes. Clustered actuation also has secondary benefits, specifically reducing the force requirements of actuators in dynamic structures, reducing the number of pre-stress modes to potentially one global mode and relieving element size limitations that occur with embedded actuation. Newly formulated clustered equilibrium equations are developed using energy methods and are shown to be a generalization of the classic tensegrity governing equations. Pre-stress analysis, mechanism analysis and stability of clustered structures are discussed. Lastly, examples compare the mechanics of a clustered structure to an equivalent classic structure and the utility of clustering is highlighted by allowing for actuation throughout a class 1 (no bar-to-bar connections) tensegrity while not embedding the actuators into the structure. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Active tensegrity structures with sliding cables – static and dynamic behaviour
Tensegrities are spatial, reticulated and lightweight structures that are increasingly investigated as structural solutions for active and deployable structures. Tensegrity systems are composed only of axially loaded elements providing opportunities for actuation and deployment through changing element lengths. In cable-based actuation strategies, the deficiency of having to control too many ca...
متن کاملDeployment aspects of a tensegrity-ring pedestrian bridge
Tensegrity structures are spatial systems that are composed of tension and compression components in a selfequilibrated prestress stable state. Although tensegrity systems were first introduced in 1950s, few examples have been used for civil engineering purposes. In this paper, tensegrity-ring modules are used for a deployable pedestrian bridge. Ring modules belong to a special family of tenseg...
متن کاملAn Approach to Compliant Locomotion Systems Based on Tensegrity Structures
Tensegrity structures are prestressed compliant structures composed of a set of disconnected rigid compressed elements connected by continuous prestressed tensional elements. A spatially limited, local impact on tensegrity structures yields a global change of their shape. This essential property initiates the development of novel compliant locomotion systems with large shape variability and sim...
متن کاملA transformable tensegrity-ring footbridge
Tensegrity structures are spatial reticulated structures composed of cables and struts. A tensioncompression equilibrium leads to lightweight systems that change shape through length changes in their members. Active members thus control several degrees of freedom simultaneously. Tensegrityring modules are transformable circuit-pattern modules. The linear combination of tensegrity rings has been...
متن کاملLearning to control complex tensegrity robots
Tensegrity robots are based on the idea of tensegrity structures that provides many advantages critical to robotics such as being lightweight and impact tolerant. Unfortunately tensegrity robots are hard to control due to overall complexity. We use multiagent learning to learn controls of a ball-shaped tensegrity with 6 rods and 24 cables. Our simulation results show that multiagent learning ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009